’ . “

©

A OTIC FILE COPY

DRAFT

Requirements For IV&V of the
NATO Common Ada Programming
Support Environment (APSE)
Interface Set (CAIS) Implementation

Diane E. Mularz
Jonathan D. Wood
Deborah M. Haydon

AD-A205 165

. . October, 1988

DTIC

ELECTE
MAR 0 1 1989

> R

SPONSOR:

Ada Joint Program Office (AJPO)
Contract No.:
F'19628-89-C-0001
is m a8 are authorized Jhuti

It h3wdot apPreded \

Approved tor public rele
Distribution Unlimnedq“‘
Trmemm— The MITRE Corporation
Washington fos | Operations
7525 Colshire Drive
McLean, Virginia 22102

DRAFT

89 3 01 063

(DISTRIBUTION STATEMENT A)

e,

J T E———" -

UNCLASSIFIED _ . $1Frs
SRl TY CLASSIFICATION QF THIS PAGE (When Data Entered) 989
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE perehD NETRUCTIONS
1. REPORT NUMBER 12. GOVY ACCESSION NO. J3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) 5. TYPE OF REPORY & PERIOD COVERED® o
Requirements for IV & V of the NATO Common Ada Programming Draft .
Support Environment (APSE) Interface Set (CAIS) 6. PERFORMING I
Implementat ion . ORMING ORG. REPORT NUMBER r
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Mularz, Diane; Wood, Johnathan; Haydon, Deborah F19628089-C-0001
9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECY, TASK

AREA R Y
Mitre Corporation EA & WORK UNIT NUMBERS

7525 Colshire Dr.
McLean, VA 22102

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Prooram Office Oct 1988
3D139 (1211 S. FERN, C-107) [T3 WUWBER OF PAGES
The Pentagon 49 .
" Washington, D.C. 20301-3081 ferent from Controlling OFfice) 15. SECURITY CLASS (of this report)
UNCLASSIFIED

15s. gEakSSE{F ICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20 (fdifferent from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)
NATO; APSE; CAIS

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
This report outlines a strategy and specifies the requirements for the development of ja
test environment which included: a test administration function that will provide confjrol
over execution of the tests and management of the test results; and a test suite whos
tests will be defined based on the syntax and semantics defined in the Special Workin
Group CAIS specification.

DD V% 1473 EDITION OF 1 WOV 65 1S OBSOLETE
140 13 $/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THMIS PAGE (When Data Entered)

e —————————————————————————

B

AYTN: Director, Freedom

TO: Assistant Secrerary of Defense { Pu. | . Afairs;

CLEARANCE RE .. »1iUF “JBLWC {ELEASE

w

F DEPARTMENT OF DEFENSE INFORMATION

information & S- curity Review, Rm 2C757, Pen n

SEE INSTRUCTIONS ON REVERSE

(This form is to be used in rcquestigzrew’ew and clearance of DoD information proposed for public release in accordance with DoDD 5230.9.)

1. DOCUMENT DESCRIPTION §

a. TPt REPORT

b. TITLE Requirements For V&V of the NATO Common Ada Programming Support
Environment (APSE) Interface Set (CAIS) Implementation

c. PAGECOUNT SO

d. SUBJECT AREA

a. NAME (Last, First, M)

b. RANK

¢ TITLE

d. OFFICE

e. AGENCY

3. PRESENTATION/PUBLICATION DATA

AN

N

Distribution To The General Public.

4. POINT OF CONTACT

5. PRIOR COORDINATION

l a NAME (Last, First, MI) a. OFFICE

Y CASTOR, Virginia, L. nl OSD(A)/CET/AIPO
b. TELEPHONE NUMBER (Include Area Code) b. AGENCY

< 1(202) 694-0210 RSAT

6. REMARKS

This document has been reviewed within the Ada Joint Program Office. It contains no sensitive or classified information.

7.RECOMMENDATION OF SUBMITTING OFFICE/AGENCY

a. The attached material has Department/Office/Agency approval for public realease (qualifications if any, are indicated in Remarks Section) and clearance
for open publication s recommended under provisions of DoDD 5230.9 | am authonzed to make this recommendation for release on behalf of:

DD row 1910

Director, AJPO

b. Clearanceis requested by 881121 (YYMMOD).

¢. NAME (Last, First, MI) d. TITLE e. SIGNATURE

{. OFFICE 9. AGENCY h. DATE (YYMMDD)

PREVIOUS EDITION IS OBSOLETE.

ABSTRACT
AV

A NATO Special Working Group (SWG) on Ada Programming Support Environments
(APSE) was established in October, 1986. Its charter is to develop a tool set that constitutes
an APSE. to evaluate the APSE on both an individual component basis and on a holistic level,
and to define a NATO interface standard for APSEs. A specific task within the associated
MITRE work program is to develop the requirements to perform testing of the Common
APSE Interface Set (CAIS) for the SWG. The SWG CAIS is the agreed upon tool interface set
for the NATO effort, and is a variant of the CAIS standard, DOD-STD-1838. CAIS provides a
standard set of kernel interfaces for APSE tools thus promoting portability of tools across

disparate architectures.”)

The SWG CAIS is complex; there are over 500 unique interfaces defined in 29 Ada
packages with over 1600 possible error conditions. This report outlines a strategy and specifies
the requirements for the development of a test environment which include: a test
administration function that will provide control over execution of the tests and management
of the test results; and a test suite whose tests will be defined based on the syntax and
semantics defined in the SWG CAIS specification. This test suite will focus on nominal
functionality and completeness of critical interfaces. The test environment will be
incrementally developed to correspond to phased deliveries of the SWG CAIS implementations.
There will be two SWG CAIS implementations installed on two different host architectures.
This report outlines the requirements to perform testing on either implementation. ({ % ﬂ)

C—

. Accesion For
 —_—

| NTIS CRARJ
cLTC Tan 0
L Unannooced 1

Justiticition
By ..
Distaabationf

Avaniabinty Codes

Avarl :)Hd-:' ot
special

|
Al ! 1

i)

ACKNOWLEDGMENTS

We would like to thank the MITRE peer reviewers for their thorough, conscientious, and
timely critique of our paper. Much credit is also due to the US. Team members and
Evaluation Review Board members who reviewed many preliminary drafts of this paper.

TABLE OF CONTENTS

Page
LIST OF FIGURES ix
LIST OF TABLES x
EXECUTIVE SUMMARY xi
1.0 Introduction 1
1.1 Background 1
1.2 Objectives 3
1.3 Scope 3
1.4 Report Content 4
2.0 SWG CAIS Test Strategy 5
2.1 Informal Design Review 5
2.2 Test Approach 5
2.2.1 Establish a Test Environment 5
2.2.2 Reuse Existing Technology 13
2.2.3 Staged Testing Capability 15
2.3 Review of Installation Guide 15
3.0 Test Environment Requirements 17
3.1 SWG CAIS Test Execution Control Requirements 17
3.1.1 Test Administration 17
3.1.2 Test Configuration Management 17
3.1.3 Test Invocation 17
3.1.4 Run-time Control 18
3.1.5 Implementation Assessment 18
3.1.6 Environment Configuration Assessment 18

vii

LR)

TABLE OF CONTENTS (Continued)

3.1.7 External Interface Requirements
3.1.8 Performance Requirements

3.2 Test Suite Requirements

3.2.1 Nominal Testing

3.2.2 Test Name Configuration Management

3.2.3 Reporting Results

3.3 Design Goals

3.3.1 Flexibility

3.3.2 Extensibility

3.3.3 Robustness

3.3.4 Portability

APPENDIX A: Overview of Verification & Validation Techniques
APPENDIX B: Available CAIS Validation Software
REFERENCES

GLOSSARY

vili

Pagc

LIST OF FIGURES

Figure Number Page

1 Elements of the NATO SWG APSE 2

ix

‘e

v

B-1

LIST OF TABLES

Table Number

Scope of SWG CALIS Interface Level Functional Testing
SWG CAIS Critical Packages/Interfaces

SWG CAIS Package Dependencies

SWG CAIS vs. Ada Language Predefined Packages

Available CAIS Validation Software

Page

10
14

34

EXECUTIVE SUMMARY

In October, 1986, nine NATO nations signed a Memorandum of Understanding (MOU)
that established a Special Working Group (SWG) on Ada Programming Support Environments
(APSE). The SWG's charter is to develop and evaluate a tool set using an agreed upon
interface set that standardizes system support to the tools. The SWG agreed upon an
interface set that is based upon the Common APSE Interface Set (CAIS), established as a
Department of Defense (DOD) standard in February, 1988 and termed the SWG CAIS. The
SWG CAIS serves as the portability layer in the APSE by providing a set of standard kernel
level interfaces to a tool developer thus supporting system level functionality in an abstract,
consistent manner. The United States (U.S.) is providing implementations of these interfaces
on two different architectures. As a member of the U.S. team supporting the NATO SWG on
APSEs as sponsored by the Ada Joint Program Office (AJPO), MITRE has responsibility for
the Independent Verification & Validation of a SWG CAIS implementation. This document is
intended to be both a plan for the IVAV task and a requirements definition for the technology
to support .

The SWG CAIS presents over 500 standard interfaces for use by a tool developer. These
mterfaces manipulate an underlying node model that manages relevant objects such as users.
processes, files, and devices. A systematic approach must be defined to provide adequate
testing of these tool interfaces prior to actual tool usage. The scope of the IV&V task has been
defined to be an independent testing activity which includes an informal design review to
nnderstand SWG CAIS implementation features in preparation for test design, development of
a test suite for a critical subset of the SWG CAIS interfaces, and review of the SWG CAIS
Installation Guide through actual utilization and review of the installation procedures.

The test approach prescribed in this document will exercise the SWG CAIS interfaces
using a test suite. The testing will be based on a functional, or “black-box” approach. The
test environment will support the testing of critical tool interfaces, as well as procedures for
providing control over test selection, input data selection, reporting of test results, and
configuration of tests. The-critical SWG CAIS interfaces will be exercised at the nominal level
with initial testing of basic functionality as well as detailed testing which will include testing of
overloaded subprograms, exception handling, adherence to the CAIS pragmatics, and handling
of global exceptions.

This paper provides an overview of the proposed SWG CAIS IV&YV effort. It sets forth
the general framework and establishes technology requirements to support this eflort.

X1

1.0 Introduction

This document defines the requirements to support Independent Verification and
Validation (IVAYV) of the Cominon APSE Interface Set (CAIS) developed for the Ada Joint
Program Office (AJPO) in conjunction with the NATO Special Working Group (SWG) on Ada
Programming Support Environments (APSE), hereafter referred to as the SWG CAIS.

1.1 Background

In the early 1970’s, the Department of Defense (DOD) determined that the proliferation
of computer languages for embedded system software was consuming an increasing portion of
the DoD) software budget. To help address this problem, the Ada language was created and
standardized in the early 1980s. However, it is recognized by DoD, the software engineering
community. and our NATO counterparts that a standardized language alone is insufficient to
address tuture large-scale development projects. To ensure the desired improvements in future
software development projects, a language needs to be coupled with quality tools. The means
to plan, analvze. design. code, test and integrate such systems on a common set of software is
referred to as a programining support environment.

In October. 1986, nine NATO nations signed a Memorandum of Understanding (MOU)
that established a SWG on APSEs. This SWG has several goals defined for it: development of
an APSE on two different hosts using an agreed upon interface set; evaluation of the tools and
the interface set as individual components; a holistic evaluation of the APSE (i.e, as an
integrated entity rather than as individual components); and specification of a NATO interface
standard for APSEs.

A STONEMAN-based APSE consists of a tool set and a system-level interface set. The
interface set provides kernel level functionality in an abstract, consistent manner with specific
system mapping embodied in a particular interface implementation. Use of these interfaces by
a tool developer promotes transportability of APSE tools across disparate architectures.

The NATO SWG APSE is based upon a STONEMAN model. While the STONEMAN
model assumes that tools will use an interface layer exclusively, the SWG APSE also allows
direct access to the underlying system, where necessary. Figure 1 illustrates the NATO APSE
and identifies the NATO participants responsible for the development of each component.
DOD-STD-183% defines a particular interface set named CAIS. The agreed upon interface set
for the NATO eflort is a variant of DOD-STD-1838 named the SWG CAIS. The SWG CAIS
will be developed for two host architecturess DEC VAX/VMS and IBM VM/SP.
Transportability of the NATO APSE will be demonstrated by a rehost of its component tools.

Four working boards were established to eflect the SWG goals. Each board has an
individual charter that defines its objectives and its deliverables. These four boards are: the
Took, and Integration Review Board (TIRB), the Demonstration Review Board (DRB), the
Interface Review Board (IRB) and the Evaluation Review Board (ERB).

Figure 1
Elements of the NATO SWG APSE

The TIRB coordinates the development and integration of the tools and the SWG CAIS
within the NATO APSE. Each participant identified in Figure 1 is tasked with developing
their respective APSE component. Specifically, the U.S. is responsible for implementation of
the SWG CAIN on the two host architectures.

Since embedded systems support was a driver in the development of Ada and APSEs, the
NATO project includes in its architecture an MC6R8020 processor as a target system. The
DRB will employ the host APSE for development of two weapon system scenarios that are
targeted to the MC68020. This demonstration will be used to evaluate the APSE from a
holistic level.

The IRB is tasked with developing the requirements and specification of an interface
standard for APSEs. To perform this task. the IRB will analyze existing interface standards
such as CAIS. the planned upgrade. CAIS-A, a European standard known as the Portable
Common Tool Environment (PCTE) and an upgrade called PCTE+. The results of their
analysis will be an interface set specification that would define the recommended set to be used
on future NATO APSEs.

The ERB will develop evaluation technology and will use it to assess the individual
components of the APSE that are developed by the TIRB participants. Both the U.S. and the
United Kingdom (UK} have specific tasks within this board. The U.S. is tasked with
performing Independent Verification and Validation (IV&V) of the SWG CAIS
implementations as well as their evaluation. The United Kingdom (UK) is responsible for
evaluation of each of the tools within the NATO APSE.

The requirements outlined in this document identify the technology required to support
IVEV of the SWG CAIS.

1.2 Objectives

The objective of this task is to define a cost-effective test effort that will nominally test
the SWG CAIS and in so doing. provide a level of confidence to the SWG CAIS users (i.¢., tool
developers) that the SWG CAIS is sufficiently tested prior to tool integration.

1.3 Scope

The scope of this document is limited to defining the requirements for performing IV&V
of the SWG CAIS. The scope of the IV&V task has been defined as an independent testing
activity which includes an informal design review to understand SWG CAIS implementation
features in preparation for test design, development of a test suite for a critical subset of the
SWG CAIS interfaces, and review of the SWG CAIS Installation Guide through actual
utilization of the installation procedures. This document represents the first of a set of
deliverables to the NATO SWG on APSE eflort related to this task.

1.4 Report Content

This document describes the requirements to perform testing of the SWG CAIS. The
proposed strategy for testing of the SWG CAIS is given in Section 2. Section 3 specifies the
requirements for a test environment that will support the testing of the SWG CAIS
implementation. As background material, an overview of IV&V techniques and their
applications is provided in Appendix A. Appendix B provides a tabular listing of all CAIS
validation software that has been previously developed and is available for reuse.

2.0 SWG CAIS Test Strategy

The proposed strategy for testing of the SWG CAIS implementations takes into account
current test techniques hoth in terms of methods and available technology along with
considerations that are unique to the NATO effort.

The test strategy includes an informal design review, development of a test suite for a
critical subset of the SWG CAIS interfaces, and review of the SWG CAIS Installation Guide.

2.1 Informal Design Review

To better understand the SWG CAIS implementation architecture and utilize this
understanding in the design of more eflective tests, the test team will review the SWG CAIS
implementation design on an informal basis. This review should provide a basis for tailoring
existing tests and developing additional tests. The design information (APSE MOU, NATO
1986) provided will be available for each review.

The user manual (APSE MOU, NATO 1986) provided with each version of the SWG
CAIS implementation will be examined from the user viewpoint, to determine if the manual
reflects a reasonable user interface and accurately describes user functionality.

2.2 Test Approach

The test approach for the actual testing will be developed for the SWG CAIS
implementation. The test capability will be developed using a functional or black-box
approach to test specification. Tests will be generated based on the specification of the SWG
CAIS and not on the specific structural details unique to a given implementation.

The tests will be run to ensure simple or nominal functionality and completeness of the
interfaces. The intent is to ensure to a tool writer that the expected SWG CAIS operations
are present, and that these operations are syntactically and semantically equivalent to the
SWG CALS specification.

2.2.1 Establish a Test Environment

A test environment will be set up for the tests. This test environment will consist of a
test suite and a set of manual procedures that will address the execution of Ada software. The
specific requirements for this technology are provided in Section 3. The major components and
rationale for the test environment are provided in the following Sections.

2.2.1.1 Test Suite. The scope of the SWG CAIS test effort currently includes only
those interfaces determined to be critical to NATO tool writers. Table 1 lists the packages
explicitly defined in the current SWG CAIS specification, the number of unique interfaces
associated with each package, and the number of parameters and exceptions associated with
each package. Note that the number of unique exceptions defined for the SWG CAIS is
approximately 39. These can be raised by different interfaces for similar conditions resulting in
over 1600 possible exception conditions.

Table 1

Scope of SWG CAIS Interface Level Funetional Testing

Reference In Package Interfaces | Parameters | Possi-
SWG CAIS ble
Specification Excep-
tions
Raised |
511 CAIS_DEFINITIONS 0 0 0
512 CAIS_.NODE_MANAGEMENT 66 146 277
513 CAIS_ATTRIBUTE_MANAGEMENT 26 73 120
514 CAIS_ACCESS_.CONTROL-.MANAGEMENT 12 27 48
515 CAIS_STRUCTURAL_NODE_-MANAGEMENT 4 26 36
521 CAIS_PROCESS.DEFINITIONS 0 0 0
522 CAIS_.PROCESS_.MANAGEMENT 38 114 166
531 CAIS_DEVICES 0 0 0
532 CAIS_IO_DEFINITIONS 0 0 0
533 CAISJO_ATTRIBUTES 16 16 60
534 CAIS_DIRECT.O 16 4 28
535 CAIS_SEQUENTIALIO 11 34 28
5.3.6 CAIS_.TEXTJO 56 79 28
53.7 CAIS-.QUEUE.MANAGEMENT 18 141 130
538 CAIS_SCROLL_TERMINAL_10 42 58 64
539 CAIS_PAGE_TERMINAL_IO 49 3 82
5.3.10 CAIS_.FORM_TERMINAL_IO 30 45 35
5.3.11 CAIS_]MAGNETIC_TAPE_IO 19 32 43
53.12 CAIS.IMPORT_EXPORT 2 12 24
5313 SWG._CAIS_HOST.TARGET.IO 6 10 10
541 CAIS_LIST_.MANAGEMENT 29 55 g8
54121 CAIS_LISTITEM 10 33 63
54122 CAIS.IDENTIFIERITEM 11 31 69
54123 CAIS.INTEGERITEM 14 31 70
54124 CAISFLOATITEM 11 31 70
54125 CAIS.STRINGITEM 10 30 87
5.5 CAIS.STANDARD 0 0 0
5.6 CAIS_.CALENDAR 15 29 5
5.7 CAIS_ PRAGMATICS 0 0 0
Totals 516 1610 1 1621

Determining the number of interfaces in &« SWG CAIS package is not always s simple a8 counting the
procedures and functions listed in the teble of contents of DOD-STD-1838. For the CAIS 1/O pack-
sges, some of the interfaces are “borrowed”’ from the Ads Langusge Reference Manual with both addi-

Since not all of the interfaces listed in Table 1 can be tested within the scope of this
effort, only those SWG CAIS packages determined to be “critical” for the NATO tool writers
will be tested. Critical SWG CAIS packages were selected based on the perception of
anticipated usage by the tool writers. Ten of twenty-nine SWG CAIS packages were selected
and within these packages the critical interfaces were determined. The five data defimtion
packages will be tested indirectly through testing of these ten selected SWG CAIS packages.
Table 2 lists the critical SWG CAIS packages and corresponding critical interfaces that will be
tested.

Packages within the SWG CAIS are hierarchically defined. This means that successful
use of an interface at one level in the SWG CAIS will in general depend on the successful
execution of other S\WG CAIS packages that it depends upon. Table 3 identifies the package
dependencies. The test suite structure must account for these dependencies.

Given that validation of the SWG CAIS is based on a functional approach, the results of
a test can only be analyzed from the inputs and outputs of a test; it cannot make use of any
internal structures or logic of an implementation to evaluate the results. This implies that in
some Instances it will be necessary to execute one SWG CAIS interface to determine the
validity of the output of another interface. For example, a test would be developed to test the
OPEN file interface. To ensure that the OPEN function works correctly, the Boolean function
IS_OPEN could be used. Therefore, the OPEN test depends on successful operation of the
ISCOPEN interface. The order of interface tests therefore becomes an important test
consideration. Lindquist in (Lindquist, 1984), identifies this test issue as a ‘“hidden interface.”
Tests will be designed to exercise each interface independently. If there are hidden interfaces,
the dependent test is performed first. The detailed requirements for this test suite are defined
in Section 3.

2.2.1.2 Test Setup. In addition to the development of the test suite, a test support
capability is needed in this test environment. Procedures to incorporate such a capability will
be developed. These procedures will provide support for setting up the tests, controlling the
execution of a test, determining the order of execution for a test set, managing the results
generated during execution, and providing a user interface for the test environment.
Configuration management techniques will be utilized to control the testing process. As well,
the Ada code will be designed to capture and report test results.

The tests will focus on establishing the existence of the tested SWG CALIS interfaces and
identifying whether the exceptions associated with each interface exist and are correctly
utilized.

The specific requirements for this capability are provided in Section 3.

2.2.1.3 Tester. Some functions that need to be performed for testing will be provided
by a person called a “tester.” It will be necessary to have a person perform some manual
functions as a part of a test exercise. These functions include: setup of a testing session,
performance of recovery or restart procedures, performance of interactive tests, review and
interpretation of test results, creation of test reports, resolution of discrepancies between the

Tuble 2
SWG CAIS Critical Packages/Interfaces

CIeal SWG CAL Pacl

Critical latert

CAISNODE_.MANAGEMENT

CAIS_ATTRIBUTE_LMANAGEMENT

CAIS_STRUCTURAL.NODE_MANAGEMENT
CAIS_PROCESS_MANAGEMENT

CAISDIRECT.JO

CAIS.IMPORT.EXPORT

CAIS.FORMPAGE)LTERMINAL IO

DELETE_.NODE
OPEN

CLOSE
COPY_NODE

CREATE_SECONDARY_RELATIONSHIP
DELETE_SECONDARY_RELATIONSHIP

IMPORT.CONTENTS
EXPORT.CONTENTS

N/A

Table 2

SWG CAIS Critical Packages/Interfaces (Concluded)

-

CAIS.SEQUENTIALIO

CAIS.TEXTJO

CAISLIST.MANAGEMENT

Crcalatert

CREATE
OPEN

CLOSE

RESET

READ

WRITE
SYNCHRONIZE

CREATE
OPEN

CLOSE

RESET
PUT_LINE
GET.LINE
SYNCHRONIZE

SET_-TO_EMPTY.LIST
COPYLIST
CONVERT_TEXT-TO.LIST
SPLICE
CONCATENATE.LISTS
EXTRACT.LIST
REPLACE

INSERT

DELETE

IS EQUAL

KIND.OF _LIST
KRIND.OF ITEM

CONVERT_TEXT-TO.TOKEN
COPY_TOKEN

Table 8

SWG CAIS Package Dependencies

{—_Package Name

Dependent on Package

CAIS_.PRAGMATICS
CAIS_STANDARD
CAIS_LISTIMANAGEMENT

CAIS_DEFINITIONS

CAIS_CALENDAR

CAIS_ATTRIBUTE-

MANAGEMENT

CAIS_ACCESS_CONTROL-
MANAGEMENT

MANAGEMENT

CAIS.INODE_MANAGEMENT

CAIS_STRUCTURAL.NODE.

CAIS_PROCESS.DEFINITIONS

N/A
CAIS_PRAGMATICS

CAIS_STANDARD
CAIS_PRAGMATICS

CAIS_STANDARD
CAIS_LIST MANAGEMENT

CAIS_.STANDARD
CAIS_.STANDARD
CAIS_DEFINITIONS
CAIS_.CALENDAR
CAIS_LIST_MANAGEMENT
CAIS_STANDARD

CAIS_DEFINITIONS
CAIS_LIST.MANAGEMENT

CAIS_DEFINITIONS
CAIS_LIST_.MANAGEMENT
CAIS_DEFINITIONS
CAIS_ACCESS_-CONTROL.
MANAGEMENT
CAIS_LIST_/MANAGEMENT

CAIS_DEFINITIONS

CAIS_LIST-MANAGEMENT

tains 1 e
None
None
CAIS_LISTITEM
CAIS_IDENTIFIER.ITEM
CAISJINTEGER.ITEM
CAIS_FLOAT.JITEM
CAIS_STRING.ITEM

None

None

None

None

None

None

None

10

Table 9

SWG CAIS Package Dependencies (Continued)

Package Name

Dependent on Package

Contains/Exports
Package

CAISJO.DEFINITIONS

CAISJO-ATTRIBUTES

CAIS_DIRECT.IO (GENERIC)

CAIS_SEQUENTIAL.IO
ERIC)

CAIS_PROCESS.MANAGEMENT

(GEN-

CAIS_STANDARD
CAIS_.CALENDAR
CAIS_DEFINITIONS
CAIS_LIST_ MANAGEMENT
CAIS_PROCESS_DEFINITIONS
CAIS_ACCESS_.CONTROL-
MANAGEMENT

CAIS_STANDARD
CAIS_DEFINITIONS
CAIS_LIST . MANAGEMENT

CAIS_STANDARD
CAIS_DEFINITIONS
CAISIO_DEFINITIONS

CAIS_STANDARD
CAIS_DEFINITIONS
CAIS_JO_DEFINITIONS
CAIS_LIST_MANAGEMENT
CAIS_ACCESS_CONTROL-
MANAGEMENT

CAIS_.STANDARD

CAIS_DEFINITIONS
CAIS_JO_DEFINITIONS
CAIS_LIST_.MANAGEMENT
CAIS.ACCESS_CONTROL-

MANAGEMENT

None

None

None

Self

Self

11

Table 8

SWG CAIS Package Dependencies (Concluded)

Package Name

Dependent on Package

Contains/Exports Pack-
_age

CAIS_TEXT_IO (GENERIC)

CAIS_QUEUE.MANAGEMENT

CAIS_SCROLL-TERMINAL.IO

CAIS_PAGE_-TERMINAL.IO

CAIS_FORM_TERMINAL.IO

CAIS]MAGNETIC_TAPE_IO

CAIS_IMPORT-EXPORT

SWG_CAIS_HOST.TO.TARGET.10

CAIS_STANDARD
CAIS_DEFINITIONS
CAISJO_DEFINITIONS
CAIS_LIST_MANAGEMENT
CAIS.ACCESS_CONTROL-
MANAGEMENT
CAIS_STANDARD
CAIS_DEFINITIONS
CAISJO_DEFINITIONS
CAIS_LIST MANAGEMENT
CAIS_ACCESS_CONTROL-
MANAGEMENT

CAIS_STANDARD
CAIS_DEFINITIONS
CAIS_IO_DEFINITIONS

CAIS_STANDARD
CAIS_DEFINITIONS
CAIS_IO_DEFINITIONS

CAIS_STANDARD
CAIS_DEFINITIONS
CAIS_IO_DEFINITIONS

CAIS_STANDARD
CAIS_DEFINITIONS

CAIS.DEFINITIONS
CAIS_LIST MANAGEMENT

CAIS_.STANDARD
CAIS_LIST MANAGEMENT

CAISJO-DEFINITIONS

Self, INTEGER-IO,
FLOAT.O, FIXEDO,
ENUMERATION.O

None

None

None

None

None

None

None

12

tester's and the implementor’s interpretation of the specification. etc. In general. the tester
will provide the human interface to the test environment.

2.2.2 Reuse Existing Technology

Several technologies currently exist that can be incorporated to varving degrees into the
SWG CAIS test environment specified in Section 3. The available technologies are presented
here along with the strategy adopted for their reuse in the test environment. Appendix B lists
the DOD-STD-1838 interfaces, identifies which interfaces have corresponding test software.
and identifies the source for this test software.

2.2.2.1 ACVC Tests. As part of the specification of the Ada language (ANSI/MIL-
STD-1815A. 1983). several packages are identified as predefined library packages of any Adu
compilation system. In conjunction with the development of the Ada language. an Ada
Compiler Validation Capability (ACVC) has been developed and is used to ensure compliance
to the Ada language standard by a given vendor (ACVC User's Guide. Version 1.9). The
ACVC includes tests for each of the predefined packages. A paralle] exists between several of
these predefined packages and a subset of the SWG CAIS packages. These packages are:
TEXTJO. DIRECTI0, SEQUENTIALJO, and CALENDAR. The equivalent SWG CAIS
packages either require compliance with the Ada standard for a given interface. identify a
variation on the required functionality, or specify additional interfaces to be supported (See
Table 4 for a comparison of the predefined Ada language standard input;output (I/0)
packages and the SWG CAIS (1/0) packages. The package CALENDAR is virtually the same
for both).

The ACVC tests for those Ada interfaces that are equivalent to SWG CAIS interfaces
will be considered a sufficient test set for the S\WG CAIS interfaces and will be incorporated
into the test suite. For those SWG CAIS interfaces that replace the Ada language standard
interfaces, a study of the available test software will be made. Reuse of these tests will be
determined on a test by test basis. Those interfaces that are new to the SWG CAIS will. of
course, require the development of new tests.

2.2.2.2 CAIS Prototype Tests. Several prototypes of the January, 1985 version of
the CAIS (Proposed, MIL-STD-CAIS) have been developed, along with some validation
software. Test software from the following two prototypes is available for reuse: an in-house
MITRE implementation (Study of the Common APSE Interface Set (CAIS), 1985) and a CAIS
Operational Definition (CAISOD), (CAISOD, 1986).

Note that the current CAIS standard (DOD-STD-1838) does not directly map to the
Januvary, 1985 version; packages have changed in both content and syntax, and subprograms
have been modified syntactically as well as semantically. In addition, the SWG CAIS
specification (SWGCALIS, 1987) introduces variations on DOD-STD-1838 based on the needs of
the tool writers as identified in the NATO SWG on APSE Requirements document; some
packages in the SWG CAIS will be subsets of the CAIS standard or will have degenerate
behavior, and an additional package has been added to the SWG CAIS specification to support
host/target communication. To actually determine the reuse potential for the MIL-STD-CAIS
prototype test software, it will be necessary to analyze the tests with respect to the overall test
case generation strategy identified for this test environment. If any tests can be reused or

13

Tuble §
SWG CAIS vs. Ada Language Predefined Packages

Ada Standard | CAIS.DIRECTIO | CAIS_SEQUENTIALIO | CAIS_TEXTJO
! Function /Procedure

CREATE
OPEN
CLOSE
DELETE
RESET
MODE
NAME
FORM
ISCOPEN
READ
WRITE
SETINDEX
INDEX

SIZE
END_OF_FILE
SETAINPUT
SET_OUTPUT
STANDARDINPUT
STANDARD_OUTPUT
CURRENTUNPUT
CURRENT.OUTPUT
SET_LINE_LENGTH
SET_PAGE_LENGTH
LINE_.LENGTH
PAGE_LENGTH
NEW_LINE
SKIP.LINE
END_OF.LINE
NEW_PAGE
SKIP_PAGE
END_OF_PAGE
SET.COL
SET-LINE
COL

LINE

PAGE

GET

PUT
GET_LINE
PUT_LINE

| SYNCHRONIZE

o®

et e s s e s s s BN NZZNRZRRD
>----n--c-l-vv-v-'-m'-mwmzzm:v'zw

&mmmmmwmmmmmmmmmmmwwmeZwmmv e ZZNRVZOAN

R = replace N = non-existent in CAIS
S = same in both A = added for CAIS
- = pot in Ada or CAIS

B

modified to satisfy a needed test case, the tests will be added to the test suite. Likely
candidates for reuse are those developed for the CAIS_LIST NIANAGEMENT package.

2.2.2.3 CAIS Terminal I/O Tests. A virtual terminal implementation in Ada
along with the documentation and acceptance tests is available in the public domain. This
capability formed the precursor to the three terminal packages currently defined in the CAIS.
The tests have a high degree of reusability, are well documented, and should provide good
coverage of these packages.

2.2.2.4 United Kingdom Evaluation Technology. The UK is contributing tool
evaluation technology as an ERB deliverable to the NATO effort. This technology consists of
a test harness and a test suite that will be used to evaluate individual tool components in the
APSE. The test harness is written in Ada and is available for reuse in this NATO effort. The
UK test harness will be evaluated for use in the initial test environment.

2.2.3 Staged Testing Capability

The TIRB plans to stage delivery of tools and the SWG CAIS implementations. A
staged development approach will also be adopted for the SWG CAIS test capability. The
initial test environment will focus on testing nominal functionality and will incorporate
reusable existing tests. Later versions of the test environment will add nominal tests for
interfaces that are not covered by any existing tests; and will provide enhancements to the test
execution control and reporting component.

The SWG CAIS developer of the first implementation will provide staged releases of the
SWG CAIS implementation during the development process. Each SWG CAIS implementation
release will be regression tested. As the test environment is expanded to include additional
tests, these additional tests will be performed against the most recent SWG CAIS
implementation release.

2.3 Review of Installation Guide
The SWG CAIS Installation Guide will be reviewed from three perspectives:
completeness, consistency, and correctness. The guide will be used to perform the initial setup

of the SWG CAIS implementation in preparation for the test exercises. Any errors, omissions,
or discrepancies in the Installation Guide will be noted in the final test report.

15

3.0 Test Environment Requirements
This section delines the technology required to support the SWG CAIS test strategy.

The primary goal of the SWG CAIS Test Environment is to support the test of a SWG
CAIS implementation as much as possible. When necessary, this includes determining the
extent of a partial implementation of the SWG CAIS and then tailoring the tests to test only
those features implemented. As well, it is necessary to ensure that the SWG CAIS interfaces
function in accordance with the DOD-STD-1838 specification as modified by the SWG. This
technology must permit the construction and execution of a large number of repeatable,
verifiable experiments on the SWG CAIS. Secondary goals for the Test Environment are to
build a tool environment which is portable, flexible. extensible, and robust.

The remainder of this requirements section is organized into three sections, intended to
outline the requirements for the Test Environment. First, the test execution control
requirements are presented in detail. Second, the requirements for the Test Suite are
discussed. Lastly, general design goals are discussed.

3.1 SWG CAIS Test Execution Control Requirements

Neveral functions are required to support the process of testing the SWG CAIS:
administrative functions outside the actual testing process, management of the large volumes
of data expected from executing the tests, configuring the test sequences, permitting control
during the execution of the tests, reporting the results of the tests, assessing the extent of the
SWG CAIS implementation undergoing test, determining the effectiveness of the tests,
ensuring that differences in host implementations do not interfere with test results, and
communicating with the user efficiently and reliably. Each major requirement is individually
defined in the following sections.

3.1.1 Test Administration

Procedures shall be developed for establishing users, defining and maintaining SWG CAIS
node model instances, and performing other administrative functions.

3.1.2 Test Configuration Management

Procedures shall be established that are capable of cataloging test results, enforcing an
order to the tests for regression testing of a SWG CAIS implementation, and identifying Test
Suite baselines. It should also support dynamic reconfiguration of tests. The tester should be
able to select an individual test or tests for execution outside the context of an integrated test
suite. This allows for user selection of a test execution order that is different from any
predefined order.

3.1.3 Test Invocation
Many tests can be grouped together, such as the CAIS node management tests and the

CAIS list management tests. Tests may be organized into groups which exercise interfaces
from the same CAIS package or share the same type of testing approach. Grouping of tests

17

|

will permit more confidence that no relevant tests have been overlooked, as well as decrease
the time needed to construct a test set and allow the operator to rerun the same exact group
of tests. The ability to form logical. hierarchical groups of tests will also be important. since
the order in which tests are executed is critica! ‘0 ensuring that only tested SWG CAIS
interfaces will be used to test those SWG CAIS interfaces that have not been tested.
Moreover, existing groups of tests (ACVC and prototype CAIS tests) will need to be easily
integrated into the test suite. Groups of tests shall also be saved for future use in a permanent
form. kach group shall have a unique name which can be referenced from the context of
another group of tests. Naming groups and then using the names within the context of
another group is the primary mechanism for forming hierarchical groups.

3.1.4 Run-time Control

The Test Environment will be designed to run in batch mode as much as possible.
Interactive input and output will also be supported only where necessary. This will most likely
be needed for testing of the terminal 1O packages.
3.1.5 Implementation Assessment
» In addition to testing for the conformance of any SWG CAIS implementation, its extent
(the part of the SWG CAIS specification which is actually implemented) shall also be
discernible. Determining the extent of the SWG CAIS implementation is most important
during the early phases of SWG CAIS development as it lends itself to a staged
implementation.
3.1.6 Environment Configuration Assessment

It is necessary to determine the exact configuration of the underlying software and
hardware environment. The implementation dependent characteristics of the Ada
development environment must be understood so that they can be taken into account during
testing. Different configurations of the underlying software and hardware may influence the
test results. Some limitations and variations in the architecture and host operating system
which may prevent some tests from reporting correct results are:

e task scheduling algorithm

e representations of data objects

e structure of the file system

e types of terminals and printing devices supported

e available Ada pragmas

° Ada attributes

18

The implementation of the SWG CAIS Test Environment will permit multiple user
interfaces, according to the types of devices available.

3.1.7 External Interface Requirements

The Test Environment must interact with the host hardware and the host software
development environment. The following two sections address these interfaces.

3.1.7.1 Hardware Interfaces. The Test Environment is required to execute on one
of the two hardware configurations specified in the NATO SWG APSE Requirements
document.

3.1.7.2 Software Interfaces. Some parts of the Ada development and execution
environment must be present during SWG CAIS testing. The following list is a minimum set
of resources which must be available for Test Environment execution:

e A validated Ada compilation system

e SWG CAIS implementation

3.1.8 Performance Requirements

Two types of performance are applicable to the design of the SWG CAIS Test
Environment: timing and capacity. Timing performance refers to the ability of the system to
execute tests in a timely manner. Capacity refers to the ability of an Ada compilation system
to implement correctly a given number of Ada objects. For example, Ada compilers may have
limitations on the number of enumeration literals supported before they exhaust symbol table
space. The Ada compilation system may have difficulty handling the large numbers of
functions and procedures in the SWG CAIS Test Suite.

Performance is also important during test suite construction. The test suite shall be
designed so that tests can be independently compiled, linked and executed. It shall also be
possible to incrementally add to or modify the test suite with the eflort required to build a new
suite localized to the tests being added or changed.

The speed of execution of the Test Environment is a secondary consideration to the more
important issues of complete and reliable testing. Since the SWG CAIS implementation will
likely have the greatest influence on total test time, and since the speed of the SWG CAIS
implementation is not controllable, SWG CAIS tests should be designed to consume as little
time as possible. The tests must also be designed to minimize execution time especially in the
area of user interaction, but it is expected to be a secondary performance issue in the Test
Environment as a whole.

19

3.2 Test Suite Requirements

The testing of the SWG CAIS is based on a black-box or functional testing approach.
The goals of this testing eflort are to ensure the existence and syntactic correctness of the
SWG CAIS interfaces in a given implementation, and to ensure compliance to the semantic
intent of the specification. The first goal can be met in a rather straightforward, brute force
manner since the syntax of the interfaces is formally defined through Ada packages. The Ada
compiler will do extensive static syntax checks as well as static semantic checks of the declared
data types. Ensuring conformance to the semantics of the specification is more difficult,
however, since the semantics of the SWG CAIS are not formally specified.

The tests consist of nominal tests which ensure simple or nominal functionality and
completeness of the interfaces.

The details of the nominal tests are addressed in the Section 3.2.1. Items in the SWG

Section 3.2.3 specifies conventions to be followed for configuration management of the test
names. The final results will be contained in a report as addressed in the Section 3.2.4.

3.2.1 Nominal Testing

In nominal testing, each “critical” SWG CAIS interface as defined in Table 2 shall be
individually examined at the simplest or nominal level. An interface is a primary interface, an
overload, or an additional interface. Each interface is unique even though some interfaces may
share the same name. Although the focus of an nterface test is the test of a particular
interface, the actual test will often require the use of other SWG CAIS interfaces. Use of
additional interfaces will be necessary to establish a SWG CAIS node model instance, to set
the node(s) state, to traverse a part of the node model, to a specific node prior to test
execution, or to ensure correctness of the interface under test. Therefore, the ability to
execute tests for most interfaces will also depend on the success of other interface tests. The
dependencies between interfaces will be derived during test generation for the individual
interfaces. There are also dependencies among the SWG CAIS packages as previously
identified in Table 4. Both forms of dependency will force a specific ordering of the nominal
tests or force the combining of interface tests.

It is possible to identify sets of SWG CAIS interfaces which, for testing purposes, are
mutually dependent, such as OPEN and IS_LOPEN. If identification of a small “core set” of
mutually dependent SWG CAIS interfaces upon which the rest of the SWG CALIS interfaces
depend were possible, then the “core set” of interfaces could be tested by some other means
(either by verification or mathematical proof, for example). The rest of the SWG CAIS
interfaces could then be tested using only previously tested SWG CAIS interfaces. Testing
would then be a process of using only already-tested SWG CAIS interfaces to produce other
tested SWG CAIS interfaces.

However, it is not possible to identify a small “core set” of mutually dependent SWG
CAIS interfaces upon which the rest of the SWG CAIS interfaces depend. This is probably
because an interface set is designed not to be redundant in the first place.

Since the identification of a “core set” seems unlikely and requirements exist for black-
box testing of the SWG CAIS interfaces on two architectures. the process of testing one SWG
CAIS interface must depend on other S\WG CALIS interfaces to both create the pre-conditions
and evaluate the post-conditions for each test. Testing of the SWG CAIS must then proceed
inductively, assuming for a given test that one set of SWG CAIS interfaces is correct when
using that set to test another SWG CAIS interface.

Nominal tests must show that an implementation behaves as expected under both normal
and exceptional conditions. To ensure this, the tests will set up illegal as well as legal input
conditions to induce both normal and exceptional responses. These tests will examine each
interface with simple test data sets to determine if the interface has been implemented beyond
stubbing and to determine if each exception defined as relevant for that interface can be raised.

It is beyond the scope of the current test effort to perform exhaustive testing. This type
of testing will determine the thoroughness of the interface implementation by aggressively
attempting to locate errors in the semantics of each interface through more extensive test data
sets.

3.2.1.1 Nominal Test Setup. A separate test will be written for each critical
interface. This set of critical interfaces has been defined previously in Table 2. The purpose of
this test is to demonstrate minimal functionality through the use of a set of simple test cases.
Existence tests will check for the correct functioning of an interface using valid parameter
values, and exception tests will check for the SWG CAIS implementation’s ability to raise each
exception.

Each test shall consist of a simple exercise of an interface. Input values will be defined
for each parameter of mode “in” or “in out” as well as the actual node model instance needed
(if any) prior to test execution. Expected values will be defined for each parameter of mode
“in out” or “out” (if any), for each function return value (if any), for the expected exception to
be raised (if any), and for the expected node model instance following test execution (if any).

The existence tests will check for the proper operation of an interface. Any exceptions
raised will indicate that the expected conditions were not met. The exception tests will check
for expected exceptions and expected exceptions that are not raised will indicate that the
expected conditions were not met. The tests will consist of the following steps:

o Ensure that a correct SWG CAIS node model instance exists prior to execution of
this test. This implies the creation of a SWG CAIS node model instance, the use of
a predefined SWG CAIS node model instance, or the use of a previously generated
node model instance created by a previously executed test. This will require the use
of other SWG CAIS interfaces.

e Execute the interface with the predefined input values.

e Compare the actual profile values with the expected profile values.

e Compare the resultant SWG CAIS node model instance with the expected SWG
CAIS node model instance. This may involve the use of other SWG CAIS
interfaces.

o Compare the actual exception raised (if any) with the expected exception.

3.2.1.2 Nominal Test Success Criteria. A nominal test will be considered
successful if the following criteria are met:

o The test reaches completion. Note that an interface used to establish the
preconditions for this test could raise an exception. The test would then be
considered invalid.

e The expected output profile matches the actual output profile for an existence test.
For an exception test, the actual exception raised matches the expected exception.

o The expected SWG CAIS node model instance matches the actual SWG CAIS node
model instance.

The status returned from each nominal test will be one of the following:
e Pass -- the nominal test was successful according to the stated success criteria.

e Fail/reason -- the nominal test was not successful according to the stated success
criteria. The reason portion of the status will identify which of the criteria was not
met (i.e., SWG CAIS node model instance was not correct, an unexpected exception
was raised, a parameter was not correct, or the interface does not exist).

Note that some exceptions defined in the SWG CAIS cannot be raised directly through
an external testing mechanism. For instance, the exception TOKEN_ERROR cannot be
raised directly since a token is a limited private type that cannot be explicitly provided as
input to a test. Such exceptions cannot and will not be explicitly tested.

3.2.1.3 Predefined Attributes and Relations. The SWG CAIS specification
identifies two forms of predefined information: relations and attributes (See DOD-STD-1838,
Appendix A). Tests shall be defined to ensure that the SWG CAIS implementation supplies
the required predefined information for the critical interfaces. These tests shall be incorporated
into the interface tests.

3.2.2 Test Name Configuration Management

Configuration management of the tests is needed to identify which tests are run against
the SWG CAIS implementation. The suite of SWG CALIS tests is expected to be quite large.
There are over 500 functions and procedures (SWG CAIS interfaces) in the thirty-two
packages comprising DOD-STD-1838. The SWG CAIS has additional interfaces defined in the
package SWG_CAIS_HOST_-TARGET_IO. For each interface, a test must be constructed.

Since there is a large number of SWG CAIN tests, configuration management of the test names
must be rigorous.

The method for generating test names must satisfv several requirements. The objective
of these requirements is to identify the purpose and scope of a SWG CAIS test. Configuration
management of the SWG CAIS Test Suite applies to both the different tests and their
associated files (e.g., input and output files)

The specific requirements for generation of test names are:

e The test name shall uniquely identify the interface undergoing test. While several
test case names may correspond to one SWG CAIS interface, in no circumstance
will one test case name correspond to more than one SWG CAIS interface.

e The test names shall be methodically generated such that identification of the SWG
CAIS interface being tested and the exact component of that interface heing tested
shall be related to DOD-STD-1838 and be simple to look up.

. The test names shall allow for overloaded versions of the same interface.

o The test names shall allow for identification of pragmatics being tested for that set
of global tests defined in section 3.2. These names should also he related to DOD-
STD-1838.

3.2.3 Reporting Results

The final test report will identify what the tests are supposed to accomplish, and include
any relevant statistics regarding the number and type of tests run. A summary analysis of the
test results will be presented.

3.3 Design Goals

This section describes additional design goals for the Test Environment. Where possible,
the goals of flexibility, extensibility, robustness, and portability should be met.

3.3.1 Flexibility

Flexibility is the ability to change SWG CAIS test suite configurations with a minimum
of delay. Flexibility can be accomplished by establishing and adhering to standards that will
support future efforts in changing software to accommodate changes in requirements relating
to the mission, function or associated data.

3.3.2 Extensibility
Extensibility is the ability to add new tests to the Test Suite at minimum cost.
Extensibility of the Test Suite can be accomplished by establishing and adhering to syntactic

and semantic standards for tests. One form of syntactic standard, the configuration
management of test names, has already been mentioned. The configuration management of

23

test names contributes to the overall extensibility as well as maintainability of the Test Suite
by providing a taxonomy of tests. It makes clear which tests have been written, which tests
are currently needed, and which intended purpose a SWG CAIS test serves.

Each test must set up the node model instance required for the test and verify its pre-
and post- state (see Section 3.2). Therefore, each test can be executed independently of any
other test. This philosophy supports ease of test suite extensibility.

The ability to extend the Test Environment to support SWG CAIS implementation
testing should also be considered in its design. For instance, the tests should not preclude the
inclusion and instrumentation of performance measurement functions if needed.

3.3.3 Robustness

Many tests in the Test Suite will raise exceptions. Two types of exceptions will be raised
by these tests; those which are expected to be raised, and those which are not expected to be
raised. Some tests will be written explicitly to observe the correct raising of an exception
defined by the SWG CAIS specification. These exceptions are expected. If an unanticipated
exception is raised in the SWG CAIS under test or if the test has an error which raises the
wrong exception, then the exception will be unexpected.

In dealing with both types of exceptions, one overriding concern is to not have execution
stop because of an exception that was not anticipated in the test’s exception handler. Tests
which are likely to raise exceptions shall have exception handlers embedded within them.
Tests which may cause one of several exceptions to be raised shall explicitly handle the
exceptions with relevant exception handlers embedded within their bodies. An unexpected
exception shall also he trapped at the test level and its occurrence reported back.

3.3.4 Portability

Portability is the ability to move a software system from one computer to a dissimilar
computer with few or no changes to the source code. Ideally, recompilation to produce new
object code files and relinking are the only changes required to eflect a move to another “Ada
machine.” Portability issues must be addressed at three levels: the computer, the host
operating system, and the Ada compiler.

Portability can be achieved by limiting the use of implementation dependent features of
the Ada language and the underlying machine. Some host dependencies will be required, such
as access to the file system to store test results and configurations of tests to be run, but
reliance on such features shall be justified in the design. The results database shall be
portable. Individual tests shall also isolate nonportable features into separate portability
packages. The Test Environment shall be written using Ada constructs that maximize its
portability and minimize the rehosting effort.

24

APPENDIX A

Overview of Verification & Validation Techniques

A literature search of verification, validation, and testing techniques was performed as
part of this eflort. This appendix presents a summary of the findings for both the state-of-the-
practice and the state-of-the-art. It is included here for completeness since the cited references
mfluenced the SWG CAIS Independent Verification and Validation (IV&V) strategy.

In a software development life cycle, verification is the process used to determine
correctness. completeness, and consistency in the transformation process from one phase to
the other. Validation, on the other hand, has no regard for the intermediate phases and
instead focuses on the degree to which the final product conforms to the original specification
{Sec (Meyers, 1979); (Adrion et al, 1982); (FIPS-PUB-101, 1983); (Glass, 1979); (Lindquist,
19814)). The literature search revealed that the techniques available for performing IVEV of
the software development process depend on the degree of formalism introduced into the
software development activities. If the software is specified with a rigorous (mathematical)
notation. a formal approach is said to be used in the development process and hence formal
IVEV techniques can be applied; otherwise, an informal approach has been adopted. In
general the use of formal representations of the software and corresponding validation and
verification based on these representations is the exception rather than the rule in the current
state-of-the-practice. Such formalism is usually only introduced into the development of life-
critical or secure software.

A.1.0 Verification Techniques
In the development of a software system, two levels of verification are necessary:

e design verification --to show consistency, completeness, and correctness between the
requirements and the design.

e code verification ~ to show consistency, completeness, and correctness between the
implementation and the design.

Techniques that can be employed at each of these verification steps are described here for both
a formal and an informal approach.

A.1.1 Formal Verification Methods
Formal verification “is the process by which mathematical reasoning is used to show a
system satisfies its requirements,” (Nyberg et al, 1985). The use of formal verification requires

the use of formal specifications at each stage of development. Formal verification is then used
to evaluate the software at each stage using a consistency proof. This proving technique

25

ensures correctness in the transformation process from one specification level to the next. Use
of such techniques requires highly trained personnel and additional resources above and beyond
the normal development resources. Therefore, such techniques are usually restricted to critical
software such as a secure operating system (Walker et al, 1979).

A.1.2 Informal Verification Methods

If an informal approach has been adopted for the software development effort, there are
no formal specifications available that rigorously show transformations from the requirements
to the design to the code. Some informal verification techniques have evolved that are
generally referred to as static analysis techniques. The techniques presented here correspond
to the two verification activities of interest in this effort: design and code verification.

The generally accepted method of design verification is to conduct a design review upon
completion of the design and prior to start of coding. Glass in (Glass, 1979) identifies the
following items to be examined in a design review:

e [Lxternal interfaces

e Internal interfaces

e (ritical timing requirements

e Overall structure with respect to requirements allocation

e Human-software interactions

In (McCabe, 1980), a list of topics and detailed questions are posed for design review
areas that include:

e System structure -- risk areas, functional dependencies

e Reliability -- areas that will be potentially unreliable

e Unknowns -- user interface, hardware characteristics

e Efficiency -- bottleneck components

e Modularity -- software engineering principles applied

e Hardware -- what effect failures will have on the software

e Algorithms -- complexity, performance

o Overall system concept

e Assumptions made -- hardware, user, other software deliveries
o Portability -- separation and degree of system dependent features
e Failure -- accommodation of failure detection/recovery in the design

Some combination of these review topics should be assessed for a given design as part of the
design review process.

At the implementation level, two verification activities are normally performed: code
inspections and unit testing. Code inspections are done for each module to ensure adherence to
the design and to the coding standards. (Glass. 1979; Meyers, 1979). These inspections are
performed as desk exercises and require a static review of the code prior to execution on the
machine. A code inspection conducted by a developer and attended by an IV&V
representative, constitutes an independent verification of the code for correctness, consistency
and completeness. Developers normally unit test their software units in a development
environment. This testing is designed to verify the structural logic of the unit. The adequacy
of the unit testing is then independently verified by examination of the unit test data and
results.

A.2.0 Validation Techniques

The generally accepted approach to validation is to use testing to dynamically analyze
the code with respect to its intended functionality through execution of the implementation in
a test environment. More specifically. a test suite is developed that exercises the software as
completely and as rigorously as possible from a functional viewpoint; that is, the test suite
focuses on the external view of the software as seen by the user rather than the internal or
structural perspective. There are three items that need to be addressed in the development of
a test suite: test case generation, test drivers, and test coverage.

A.2.1 Test Case Generation

The key issue in developing a validation capability is the generation of a minimally
complete set of test cases. The completeness of the test cases is usually measured in terms of
structural coverage achieved or through some statistical analysis techniques (See section A.2.4).
A test case is defined to include both a set of inputs as well as the expected output(s). Since
testing is an incomplete process hy nature (unless exhaustive testing is performed over every
possible value for each parameter) the subset of tests selected must be chosen in an intelligent,
well-defined manner over the entire set of tests possible.

It is difficult to provide a structured view of test case generation techniques since many of
the techniques can be applied at various testing levels and can be combined into an integrated
strategy. As Beizer points out in (Beizer, 1983), a technique that may be considered a
structural testing technique at one level of testing, may be viewed as a functional testing
technique at another level. In an attempt to segment the discussion, the various techniques are
examined from the degree of formality introduced at the specification level. If a formal
specification of the semantics is available, numerous approaches exist for generating test cases
from these formal semantics. If the specification is informally specified using a natural

e)

language. there are also numerous techniques available, but they are not rigorous and therefore
3 ! | A
lend themselves less to automation.

A.2.1.1 Artificial Intelligence Approaches

The use of artificial intelligence techniques has been successfully applied in the area of
test case generation. Logic programming has been used in the validation of a set of UNIX
kernel calls (Pesch et al. 1985). In the original specification of the kernel calls, the syntax of
each svstem function was formally defined. However, the semantic intent of the function was
specified in a natural language form. Rather than develop formal specifications for the system
functions, test specifications were developed using a formal test specification language. Each
test specification consists of two parts: facts about the system call and a set of test cases
specitied by rules. Each rule consists of a set of preconditions, the system call to be tested and
the value it returns, and a set of post conditions. These test case specifications are then

implemented in PROLOG.
A.2.1.2 Algebraic Specification Approaches

Another approach combines the use of an available algebraic specification and logic
programming techniques for generation of test cases. This approach assumes the existence of
an algebraic specification that formally defines the semantics of the intended implementation.
These specifications are then used to automatically derive functional test data sets using a logic
programming tool (Bouge et al, 1985). This technique is further refined by using a
constraints-handling Prolog that limits the number of test data sets generated (Choquet, 1987).

In (Ostrand. 1985) the author advocates “transforming each equation of an algebraic
specification into a procedure whose parameters are the equation’s free variables.” The
procedure is then supplied with test cases that are executed. If the algebraic equations are
satisfied by the test case parameters. a result of true is returned; otherwise, a result of false is
supplied.

A.2.1.3 Assertion Testing

Another variant on the use of formal methods for testing software is to specify the
intended behavior of a program via assertions. Assertions are logical expressions that state
conditions that must be true at various steps in the program. The assertions are inserted into
the actual implementation and processed into the base language by a preprocessor. These
assertions are then evaluated to true or false during execution of a test. Two test data
generation techniques that are examined in (Andrews, 1985) for use with assertions are grid
and adaptive test data generation. Grid testing uses knowledge about the range of values that
a parameter can have. This technique uses this information to generate input values for one or
two parameters at fixed incremental points through their respective ranges. Assertion
violations are monitored and reported on post-mortem. In adaptive test generation, the
assertion violations are employed to generate and execute additional test cases. A feedback
Joop is used to generate new values for the input variables based on the assertion violations
detected. This level of testing is primarily a structural level testing technique since assertions

are introduced into the implementation and therefore an understanding of the internal logic is
required.

For an Ada-based development. research is ongoing into the derivation of an assertion-
based annotational language. This language (known as ANNA) augments an Ada package
specification with assertions(Luckham & von Henke, 1984; von Henke et al, 1985). These
assertions describe the intended behavior. or semantics, of the Ada package. The assertions
are introduced as special comments into the package specification and are then preprocessed
into executable Ada code.

A.2.1.4 Cause-effect graphs

Given an informal specification of the semantics of a software component, cause-eflect
graphs (NMevers, 1979; Collofello and Ferrara, 1984) can be used to transform the informal
specification into a formal logic network representation. Causes represent input conditions
while effects represent either a system transformation or an output. Causes and effects are
connected using Boolean logic. The resultant graph is then used to derive test cases by
selecting an effect and deriving the input conditions that must be satisfied to produce it. The
use of these graphs is effective for small units but becomes unwieldy for large systems. One of
the advantages to this technique is that it highlights inconsistencies in the original specification.
A disadvantage is that it 1s not effective at analyzing boundary conditions.

A.2.1.5 Equivalence-class partitioning

Another way to derive test cases is by partitioning each input parameter’s possible values
into one or more equivalence classes (Meyers, 1979; Colofello and Ferrara, 1984). Both valid
and invalid classes are defined. Test cases are then derived by selecting actual values in each
equivalence class such that the maximum number of classes are covered with the minimum
number of tests.

A.2.1.6 Boundary value analysis

It has been shown empirically that test cases that focus on boundary values provide a
better rate of error discovery than those that explore intermediate values. Boundary value
analysis builds on the equivalence partitioning technique. Equivalence partitioning creates
equivalence classes for input parameters only. Boundary value analysis also partitions the
output parameter space, then uses the derived partitions to select values at, above, and below
the upper and lower bounds of each input and output parameter partition (Meyers, 1979;
Collofello and Ferrara, 1985).

The Ada language tests some boundary level conditions itself. This is particularly true for
declared subtypes (MIL-STD-1815A). An object that is defined as a subtype and passed as a
parameter to a subprogram will have its values evaluated at subprogram execution time. Any
attempt to go outside the bounds of the subtype constraints will result in a constraint error at
run-time.

29

A.2.1.7 Random testing

The random test data generation technique attempts to minimize the number of cases
that need to be executed by employing probability distributions to assist in test case selection.
Meyers in his now classic book on software testing (Mevers, 1979) disregarded random testing
as a viable technique. New studies (Ince, 1987) challenge this opinion. but the author suggests
more empirical studies are needed bhefore definitive conclusions can be drawn. In any case,
random testing is strictly applicable at the structural test level where some degree of coverage
of the control flow is required.

A.2.2 Test Driver Generation

In addition to techniques available for generating test cases. techniques also exist for
automated test driver generation. One recent project has developed a method for creating test
drivers for Ada packages (Besson and Queyras, 1987). The work provides a test environment
generator composed of a package level driver, virtual hodies for non-implemented units. and a
command language interpreter for setup and evaluation of test cases. Test drivers are derived
from analysis of the Descriptive Intermediate Attributed Notation for Ada (DIANA)
representation of the package specification. This intermediate form of an Ada program
captures all of the syntactic and semantic intent of the code. Using this information, the
software builds a test driver for the package that will execute the subprograms specified in the
package. Since a package can have visthility into other packages through the use of context
clauses, it is important to ensure consistency between package test drivers. This test
environment generator ensures that if package specifications have changed, new drivers for
that package and all its dependent packages are automatically generated.

A.2.3 Test Coverage Analysis

Validation test cases are derived from the functional specification and not from any
knowledge of the structural components of the implementation. To determine how well the
test suite is covering the internal representation of the software requires some form of test
coverage measurement. Several test coverage techniques have been defined that determine
measurement of internal coverage received during execution of the test suite. Coverage
achieved can be measured in terms of control or data, or via an error seeding technique. Each
of these measurement techniques is examined here.

Control flow coverage metrics analyze the coverage acquired over the logical structure of
the software for a given set of test cases. Various measurements are defined for this form of
coverage metric to include: program unit(s) executed, statements within a unit executed,
branches executed, and paths through a unit (Meyers, 1979; Sneed, 1986; Collofello and
Ferrara, 1984). To produce these metrics, the source is typically instrumented with probes
that are used to maintain counts, identify the decision points exercised and the paths traversed
during a test execution. However, empirical studies of test coverage versus errors detected
(Sneed, 1986) show that such test coverage metrics do not tend to give confidence in the
reliability of the software tested.

30

A more recently developed coverage metric analyzes coverage in terms of the data rather
than the control flow (Sneed, 1986). This measurement technique requires that software
specifications be formally developed based on an assertion method for each data item, function,
and condition. These assertions are then used to derive the specified data usage. The
subsequent code is then analyzed to determine the programmed data usage. During test case
execution, actual data usage is determined. Measurements are given that compare actual to
programmed usage. and programmed to specified usage. Initial studies indicate that “‘by
requiring 90¢ data coverage twice as many program errors were discovered than with branch
coverage, especially errors of omission and computing error as well as boundry [sic] errors.”
(Sneed, 1986).

A final technique introduced by Harlan Mills (Meyers, 1979) is termed error seeding or
“bebugging.” The approach introduces known errors into the software, executes the test
software. and determines how many of the known errors were detected. Based on the number
of errors discovered, a projection is made as to the number of errors remaining. This
technique requires the knowledge of the internal structure of the code.

31

APPENDIX B

Available CAIS Validation Software

Table B-1 provides a summary of all the validation software currently available for reuse
in the SWG CAIS validation effort. The table lists all packages defined in DOD-STD-1838.
For each interface that has corresponding reusable test software, the source of the test
software 1s indicated by the following codes:

o M --MITRE prototype tests

e (- CAISOD prototype tests

e A--ACVC tests

e V- Virtual terminal I/O tests
No reusable tests exist for the following packages: access control, process management,
magnetic tape 1/0, and import/export. These packages represent approximately 14% of the
total number of SWG CAIS interfaces. It should be noted that the SWG CAIS specification
only requires that discretionary access control be fully implemented in the access control
package. Mandatory access control must be present with degenerate behavior. The SWG

CAIS also defines a new package, SWG_CAIS_ HOST_TARGETO, for which no test

software exists.

33

Table B-1

Available CAIS Validation Software

S CAS- DODSTD o

Available Tests |

WI-’/'—

Package CAIS_DEFINITIONS
P'u kage CAISXNODE_MANAGEMENT

OPEN

CLOSE
CHANGENTENT
ISCOPEN

INTENT

3 KIND_OF_NODE

OPEN_FILE_HANDLE_COUNT
PRIMARY_NAME
PRIMARY_KEY
PRIMARY_RELATION
PATHKEY
PATH_RELATION
BASE_PATH
LAST-RELATION
LAST.KEY
IS_OBTAINABLE
ISSSAME
INDEX
OPEN_PARENT
COPY_NODE
COPY_TREE
RENAME
DELETE_.NODE
DELETE_TREE
CREATE_SECONDARY_RELATIONSHIP
DELETE_SECONDARY_RELATIONSHIP
SETINHERITANCE

M
M

M
M

34

Table B-1
Available CAIS Validation Software (Continued)

CALS - mp;srmgs -

Available Tests |

5.1.2.29 Node iteration types and subtypes

5.1.2.30 CREATEJITERATOR

3.1.2.31 MORE

5.1.2.32 APPROXIMATE_SIZE

51.2.33 GETNEXT

51.2.34 SKIP_NEXT

5.1.2.35 NEXT_NAME

5.1.2.36 DELETEJTERATOR

5.1.2.37 SET_CURRENT-NODE

5.1.2.38 GET-CURRENT-NODE

5.1.2.39 TIME_-CREATED

51.2.40 TIME_RELATIONSHIP_WRITTEN

5.1.241 TIME_.CONTENTS_WRITTEN

5.1.242 TIME.ATTRIBUTE_WRITTEN
5.1.3. Package CAIS_ATTRIBUTE_MANAGEMENT

5.1.3.1 CREATE_NODE_ATTRIBUTE

5.1.3.2 CREATE_-PATH-ATTRIBUTE

5.1.3.3 DELETE_NODE_ATTRIBUTE

5.1.3.4 DELETE_PATH-ATTRIBUTE

5.1.3.5 SET-NODE_ATTRIBUTE

5.1.3.6 SET_PATH_ATTRIBUTE

5.1.3.7 GET_NODE-ATTRIBUTE

5.1.3.8 GET_PATH-ATTRIBUTE

5.1.3.9 Attribute iteration types

5.1.3.10 CREATE_NODE_ATTRIBUTE_ITERATOR

5.1.3.11 CREATE_PATH.ATTRIBUTEJITERATOR

5.1.3.12 MORE

5.1.3.13 APPROXIMATE-SIZE

5.1.3.14 NEXT_NAME

5.1.3.15 GET-NEXT_VALUE

5.1.3.16 SKIP.NEXT

5.1.3.17 DELETEITERATOR

5.1.4 Package CAIS_LACCESS_CONTROL.MANAGEMENT
5.1.5 Package CAISSSTRUCTURAL.NODE_MANAGEMENT

5.1.5.1 CREATE_NODE
5.2 CAIS process nodes
5.2.1 Package CAIS.PROCESS.DEFINITIONS

| 522 Package CAIS_ PROCESS.MANAGEMENT

N/A

2222 zx

zzzg

<

none

N/A
N/A
nope

35

Tuble B-1
Available CAIS Validation Software (Continued)

CAIS - DOD-STD-1838 Available Tests
5.3 CAIS input and output N/A
5.3.1 Package CAIS_DEVICES N/A
5.3.2 Package CAISLJO_DEFINITIONS N/A
5.3.3 Package CAISJO_ATTRIBUTES none
5.3.4 Package CAISDIRECT_1O
5.3.4.1 Definition of types N/A
5.34.2 CREATE A
5.34.3 OPEN A
5.3.44 CLOSE A
5.3.4.5 RESET A
5.3.4.6 SYNCHRONIZE
** Ada Language Subprogram equivalents **
MODE
NAME
FORM
IS_.OPEN
READ
WRITE
SET-INDEX
INDEX
SIZE
END_OF_FILE
5.3.5 Package CAIS_.SEQUENTIAL_IO
5.3.5.1 Definition of types
5.3.5.2 CREATE
5.3.5.3 OPEN
5.3.54 CLOSE
5.3.5.5 RESET
5.3.5.6 SYNCHRONIZE
** Ada Language Subprogram equivalents **
MODE
NAME
FORM
IS_.OPEN
READ
WRITE

L ENDOFFILE

>>>>§ S>>

> > 3> > >

36

Tuble B-1
Available CAIS Validation Software (Continued)

‘ CAIS - DOD-STD-1
5.3.6 Package CAIS_TEXTJO
5.3.6.1 Definition of types N/A
5.3.6.2 CREATE MA
5.3.6.3 OPEN MA
53.6.4 CLOSE A
5.3.6.5 RESET MA
5.3.6.6 SYNCHRONIZE
** Ada Language Subprogram equivalents **
MODE
FORM
IS_OPEN
READ
WRITE
END.OF_FILE
SETINPUT
SET-OUTPUT
CURRENT-NPUT
CURRENT_OUTPUT
SET_LINE_.LENGTH
SET-PAGE_LENGTH
LINE_LENGTH
PAGE-LENGTH
NEW_LINE
SKIP_LINE
END_OF_PAGE
SET-.COL
SET-LINE
COL
LINE
PAGE
GET
PUT
GET-LINE
PUT.LINE

>>~§—§>>>>>>>>>>>>>>>>>>>>>>

37

Tuble B-1
Available CAIS Validation Software (Continued)

c;us pon#rmsss

A&a&k T45~st_<1
5.3.7 Package CAIS.QUEUE_MANAGEMENT none
5.3.8 Package CAIS.SCROLL_TERMINAL_IO \Y
5.3.9 Package CAIS_.PAGE_TERMINAL_1O V
5.3.10 Package CAIS_.FORM_TERMINAL_O \Y
5.3.11 Package CAISZMAGNETIC-TAPE_IO none
5.3.12 Package CAIS_LIMPORT_EXPORT none
5.3.13 Package SWG_CAIS_HOST-TARGET-O none
5.4.1 Package CAIS_LIST MANAGEMENT
5.4.1.1 Types, subtypes, constants, and exceptions N/A
54.1.2 COPY_LIST MC
54.1.3 SET_-TO_-EMPTY_LIST]
5414 CONVERT-TEXT_-TO_LIST M
54.15 TEXT-FORM M
54.1.6 IS_LEQUAL M,C
5.4.1.7 DELETE MC
5.1.1.8 KIND.OF _LIST MC
5.4.1.9 KIND_OFITEM M
54.1.10 SPLICE MC
5.4.1.11 CONCATENATE_LISTS MC
5.4.1.12 EXTRACT.LIST M,C
5.4.1.13 NUMBER_OF_ITEMS M,C

5.4.1.14 POSITION_OF_CURRENT_LIST
5.4.1.15 CURRENT.LIST.IS_OUTERMOST
5.4.1.16 MAKE_CONTAINING_LIST.-CURRENT
5.4.1.17 MAKE_THISJITEM_CURRENT

5.4.1.18 TEXT_-LENGTH MC
5.4.1.19 GETITEM_NAME MC
5.4.1.20 POSITION_.BY_.NAME M
54.1.21 Package CAIS_LIST_ITEM
5.4.1.21.1 EXTRACT-VALUE M,C
5.4.1.21.2 REPLACE M
5.4.1.18 INSERT M
5.-4.1.19 POSITION_BY_VALUE M
5.4.1.20 Package CAIS.IDENTIFIERITEM
5.4.1.20.1 TO_TOKEN MC
5.4.1.202 TO.TEXT MC
54.1.20.3 IS_LEQUAL M,C
54.1.204 EXTRACT MC
5.4.1.20.5 REPLACE MC
5.4.1.20.6 INSERT MC
L_541207 POSITION.BY.VALUE MC
38

-

Table B-1
Available CAIS Validation Software (Concluded)

- .

'AlS - DOD-STD-1838 Available Tests |
5.4.1.21 Package CAISLINTEGER.TEM
5.4.1.21.1 TO_TEXT
5.4.1.21.2 EXTRACT
54.1.21.3 REPLACE
5.4.1.21.4 INSERT
5.4.1.21.5 POSITION_.BY_VALUE
5.4.1.22 Package CAIS_FLOATITEM
5.4.1.22.1 TO_-TEXT
5.4.1.22.2 EXTRACT
5.4.1.22.3 REPLACE
5.4.1.22 4 INSERT
5.4.1.22.5 POSITION_.BY_VALUE
5.4.1.23 Package CAIS_STRINGITEM
5.4.1.23.1 EXTRACT
5.4.1.23.2 REPLACE M,C
5.4.1.23.3 INSERT M/C
5.4.1.23.4 POSITION_BY_VALUE C
5.5 Package CAIS_STANDARD N/A
5.6 Package CAIS_.CCALENDAR
5.6.1 Definition of types, subtypes and exceptions N/A
5.6.2 CLOCK
5.6.3 YEAR
5.6.4 MONTH
5.6.5 DAY
5.6.6 SECONDS
5.6.7 SPLIT
5.6.8 TIME_OF
5.6.9 +
5.6.10 -
5.6.11 Comparison operators
. ; GMATICS

NOOQT anoNnNa

£
o

§>>>>>>>>>>

39

REFERENCES

“Using the ACVC Tests ,”” ACVC Version 1.9.
“Ada Programming Language,” ANSI/MIL-STD-1815A. Department of Defense, 22 January
1983.

“Guideline for Lifecycle Validation, Verification, and Testing of Computer Software,” FIPS-
PUB-101, U.S. Department of Commerce/National Bureau of Standards, June 6, 1983.

“Military Standard Common APSE Interface Set (CAIS),”" Proposed MIL-STD-CAIS,
Department of Defense. 31 January 1985.

Ada Programming Support Environments {APSEs) Memorandum of Understanding (MOU).
NATO, 10 October, 1986.

“Common Ada Programming Support Environment (APSE) Interface Set (CAIlS),” DOD-
STD-1838, Department of Defense, 9 October 1986.

Terms of Reference for the Evaluation Review Board for the Special Working Group on Ada
Programming Support Environments, NATO, December 11, 1986.

Terms of Reference for the Tools and Integration Review Board for the Special Working
Group on Ada Programming Support Environments, NATO, December 11, 1986.

Introduction to the CAIS Operational Definition Documentation, Arizona State University,
October, 1986.

“Specifications for the Special Working Group Common Ada programming Support
Environment (APSE) Interface Set (CAIS) Implementations,” US-Trondheim-002, NATO, 18
June 1987.

NATO SWG APSE Requirements, NATO, 25 August 1987.

Andrews, Dorothy M., “Automation of Assertion Testing: Grid and Adaptive Techniques,” in
Proceedings of the Eighteenth Hawaii International Conference on System Sciences, ed.
Sprague, R.H., Jr., vol. 2, pp. 692-9, Western Periodicals Co., Honolulu, HI, USA, 1985.

Beizer, Boris, Software Testing Techniques, Van Nostrand Reinhold Company, 1983.

Benzel, T. V., “Analysis of a Kerne] Verification,” in Proceedings of the 1984 Symposium on
Security and Privacy, pp. 125-131, IEEE Computer Society Press, 29 April - 2 May, 1984.

41

Besson. M. and Queyras, B., “GET: A Test Environment Generator for Ada,” in Ada
components: libraries and tools, Proceedings of the Ada-Europe International Conference, ed.
Sven Tafvelin, pp. 237-250, Cambridge University Press, 26-28 May 1987.

Booch. Grady, Software Engineering Components in Ada, 1987.

Bowerman, Rebecca, Gill, Helen, Howell, Charles, Reagan, Tana, and Smith, Thomas,
“Distributing the Common APSE (Ada Programming Support Environment) Interface Set
(CAIS) .7 MTR-86WO00181, The MITRE Corporation. January 1987. Contract # FI19628-
86C-0001

Bowerman, Rebeeca E., “Study of the Common APSE Interface Set (CAIS).” WP-85W00537,
The MITRE Corporation, 1 October 1985,

Carney, David J., “On The CAIS Implementation,” IDA Memorandum Report M-48],
Institute For Defense Analyses, June 1988,

Choquet. N.. “Test Data Generation Using a Prolog with Constraints,” in Workshop on
Software Testing, Banff, Canada, 1985.

Collofello. Dr. James S. and Ferrara, Anthony F., “An automated Pascal multiple condition
test coverage tool.” in Proceedings COMPSAC &{., pp. 20-26, IEEE Computer Society Press,
7-9 November 1984.

Glass, Robert L., Software Reliability Guidebook, Prentice Hall, 1979.

Henke. Friedrich W. von, Luckham, David, Krieg-Brueckner, Bernd, and Owe, Olaf,
“Semantic Specification of Ada Packages,” in Ada in use: Proceedings of the Ada
International Conference, Paris 14-16 May 1985, ed. Gerald A. Fisher, Jr., vol. V, pp. 185 -
196. Cambridge University Press, September, October 1985.

Ince. D. C., “The Automatic Generation of Test Data,” The Computer Journal, vol. 30, no. 1,
pp. 63-69, February, 1987.

Lindquist, Timothy E., Facemire, Jeff, and Kafura, Dennis, “A Specification Technique for the
Common APSE Interface Set,” 84004-R, Computer Science Dept., VPI, April, 1984.

Lindquist, Timothy E., Freedman, Roy S., Abrams, Bernard, and Yelowitz, Larry, “Applying
Semantic Description Techniques to the CAIS,” in the Formal Specification and Verification
of Ada, ed. W. Terry Mayfield, pp. 1-1 - 1-30, 14-16 May 1986.

Luckham, David and Henke, Friedrich W. von, “An Overview of Anna, A Specification
Language for Ada,” Technical Report No. 84-265, Computer Systems Laboratory, Stanford
University, September 1984.

McCabe, Thomas J., Structured Testing, 1980.

Mcelinlev. Kathivn L. and Schaefer, Carl F., “DIANA Reference Manual,” IR-MD-078,
Imtermetrics, Inc.. 5 May 1985, Contract N0O0014-84-C-2445

Myers. Glenford).. The Art of Software Testing. John Wiley & Sons, 1979.

Nyberg. Karl A.. Hook, Audrey A., and Kramer, Jack F., “The Status of Verification
Technology for the Ada Language,” IDA Paper P-1859, Institute for Defense Analyses, July,
1985,

Osterand, T. J.. “The Use of Formal Specifications in Program Testing,” in Third
International Workshop on Software Specification and Design, pp. 2563-255, IEEE Computer
Society Press. 26-27 August 1985.

Pesch. Herbert. Schnupp, Perter, Schaller, Hans, and Spirk, Anton Paul, “Test Case
Generation Using Prolog.” in Proceedings of the 8th International Cunference on Software
Engineering. pp. 252-258, 28-30 August, 1985.

Sneed, Harry M., “Data Coverage Measurement in Program Testing,” IEEE, pp. 34-40, IEEE
Computer Society Press, 1986.

W.R., Adrion and al, et, “Validation, Verification, and Testing of Computer Software,” ACM
Computing Surveys. vol. 14, no. 2, pp. 159-192, ACM, June, 1982,

Walker. B. J.. Kemmerer, R.A., and Popek, G. J., “Specification and Verification of the UCLA
UNIX Security Kernel,” in Proceedings of the Seventh Symposium on Operating Systems
Principles, pp. 64-65, ACM, New York, USA, 10-12 December, 1979.

\Wu, Liqun, Basili, Victor R., and Reed, Karl, “A Structure Coverage Tool for Ada Software
Systems,” in Proceedings of the Joint Ada Conference, pp. 294-301., 1987.

43

Acronyms

ACVC

Al

AIPO

ALS

APSE

CAIS

CAISOD

cive

CMS

GLOSSARY

Ada Compiler Validation Capability

Ada Integrated Environment. An Ada Programming Support
Suvironment project funded by the Air Force and contracted
to Intermetrics Inc.

Ada Joint Program Office. The oflice charged with the
suceess of the Ada programming language.

Ada Language System. An Ada Programming Support
Environment project funded by the Army and contracted to
Softech, Inc.

Ada Programming Support Environment. The complete set
of Ada development tools described by the “Stoneman’
document, including the Ada compiler, linker, editor,
debugger, etc.

Common APSE Interface Set. The proposed standard
(DOD-STD-1838) operating system interfaces for all Ada
projects.

CAIS Operational Definition; a partial implementation of
MIL-STD-CAIS, January 1985.

CAIS Implementation Validation Capability.

Conversational Monitoring System. A trademark of
International Business Machines, Inc.

DoD

DRB

ERB

IRB

V&V

KAPSE

KIT

MC68020

Department of Defense. The organization which identified
the need for a common, modern, high-order computer
programming language.

Demonstration Review Board. One of four boards established
by the NATO MOU. The main objective of the board is to
coordinate and review the demonstration of an APSE
capability through the use of two weapons systems scenarios,
as the basis for the holistic APSE evaluation.

Evaluation Review Board. One of four boards established by
the NATO MOU. The main objective of the work is to
coordinate and review the specification and development of
methods and tools for the evaluation of APSE tools and the
demonstration of this technology, where possible, on the tools
and the SWG CAIS.

Interface Review Board. One of four boards established by
the NATO MOU. The main objective of the hoard is to
coordinate and review the development of the requirements
and specification of an interface standard for APSEs, based
upon review of the evolutionary interface developments
(including CAIS and PCTE), to be recommended for adoption
and use by NATO and nations.

Independent Verification and Validation

Kernel APSE. The level of an APSE that presents a machine
independent portability interface to an Ada program.

KAPSE Interface Team.

A 32-bit microprocessor produced by the Motorola
Corporation.

Man Machine Interface.

46

\MoOu

NATO

SWG

SWG CAIS

TIRB

UNIX

VAX

Memorandum of Understanding. The form which NATO
agreements take.

North Atlantic Treaty Organization.

Special Working Group

Title given to the specific CAIS implementation being
developed for the NATO effort.

Tools and Integration Review Board. One of four boards
established by the NATO MOU. The main objective of the
work is to coordinate and review the specification,
developmnet and integration of a group of software tools
representative of a usable APSE through their initial
implementation on two distinct computer architectures using
an agreed interface set.

A widely-used operating system originally developed by Bell
Telephone Laboratories.

Virtual Address eXtension. A trademark of Digital
Equipment Company. The name of a widely-used computer
system from Digital Equipment Company.

Virtual Memory System. A trademark of Digital Equipment
Company. The operating system for a VAX computer.

Terms

Ada package

Bebugging

Black-box testing

Dynamic analysis

Evaluation

Exception

Formal specification language

Formal verification

Functional testing

Grey-box testing

Interface

A program unit that allows for the specification of a group of
logically related entities. A package normally contains a
specification and a body.

The process of intentionally introducing errors into a program
as a means of determining eflectiveness of program testing.

A testing approach that examines an implementation from an
external or “black-box” perspective. The test cases are
designed based on the functional specification and do not
make use of any structural or internal knowledge.

A validation technique that evaluates a product through
actual execution of it.

The process used to quantify the fitness for purpose of an
item in terms of its functionality, usability, performance and
user documentation.

Error or other exceptional situation that arises during the
execution of a program.

A precise language used to convey the semantics or meaning
of a computer program.

A process that employs formal mathematical proofs to show
correctness of a specification or implementation with respect
to its predecessor specification.

See black-box testing

A form of testing that blends techniques from both black-box
and white-box testing.

A function or procedure defined in a CAIS package
specification. It provides a tool writer with a standard
mechanism for performing a system level service without
knowledge or access to the underlying system architecture.

48

Metric

Node Model Instance

Stoneman

Subprogram

Test case generation

Test data

Test driver

Validation

Verification

White-box testing

A quantifiable indication of the state of an entity.

A particular realization of nodes, relationships and attributes
produced through execution of a set of CAIS interfaces.

The requirements document for an APSE; published by the
Department of Defense.

A program unit that is executed by a subprogram call. The
call can be in either the form of a function or a procedure.

The process of determining both the inputs to drive a test and
the expected test results.
The set of inputs needed to execute a test.

A software component that is used to exercise another
software component under test.

The process used to determine the degree of conformance of
an end product to its original specification.

The process used to determine the correctness of each
transformation step in the development process.

A class of testing that examines the internal structure of
software.

49

